オックスフォード・インストゥルメンツツの一部
拡張

Andorの高速高感度sCMOSカメラ

Andorの科学研究用CMOS(sCMOS)カメラシリーズは、信頼性のある定量科学測定を可能にする優れた性能と機能を有しています。sCMOSマルチメガピクセルカメラは、読出しノイズ、ダイナミックレンジ、フレームレートを損なうことなく、広視野そして高分解能を実現しました。生物科学から物理科学に至る広範囲なアプリケーションにおいて大きな優位性を発揮します。

新型SonaとMarana: 背面照射sCMOSカメラ

  • 背面照射、QE 95%
  • 最大4.2メガピクセル
  • 冷却温度 -45 °C ‐ 感度の究極化を追求
  • 顕微鏡検査 ‐ 細胞を広視野で捕捉、光毒性を最小化
  • 選ばれる7つの理由: Sona | Marana
  • 天文学 ‐ NEO検出、宇宙ごみ追跡、太陽観測
Request Pricing 詳しく知る

生命科学向け用途のsCMOS

細胞運動

細胞極性、細胞粘着、細胞膜波打ち、などと関連する細胞の動きは、軸索ガイダンス、組織再生、形態形成などの複合プロセスにとって重要な現象のごく一部に過ぎません。単細胞可視化という観点で見ると、細胞運動の研究は、転移性がんが変化する間の不規則な細胞増殖および細胞転移の背後のメカニズムを探求する幅広い分野と関連します。

当社は、運動中の細胞の骨格動態や膜形態を、高解像度かつ高感度で可視化するお手伝いをします。その際、背後のメカニズムが可能な限り生細胞中で保存されるよう、照射される蛍光色素分子による光毒性損傷と光退色を最小化させるよう注力します。

AndorのsCMOSファミリーは、広視野、高解像度、高フレームレートなどの条件を満足させながら運動性細胞の画像を取得するとの要求に対し、最適なカメラオプションを提供します。

発生生物学

Imaging has been instrumental for following the entire lifespan of organisms to track fates of developing cells, tissues and organs. Whole-embryo and whole-body imaging of well-established model organisms including the zebrafish and C. elegans let us understand various interconnected functional networks that shed light on nerve impulse propagation in neural circuits or ventricular pacemakers in heart models.

Many experiments in this field will demand high performance sCMOS cameras to augment complex optical systems with seamless imaging. 

Andor sCMOS cameras provide solutions to the rapid frame rates and large fields of view that are inherent to study of developmental specimens using the Light Sheet Microscopy technique, also lending themselves equally well to rapid ion flux fluorescence measurements in embryo signalling.

細胞膜

Analysis of phenomena associated with the plasma membrane is crucial for a large number of biological models involving cell adhesion, cell-to-cell communication, signal transduction as well as cell fate differentiation.

The plasma membrane can be imaged in many ways, some of which can involve direct membrane labelling with lipophilic or voltage sensitive dyes. Imaging of this busy and very delicate part of the cell is not a mean feat and requires highly sophisticated imaging solutions to unravel the cell membrane’s multi-fold functionality without damaging it in the process.

Rapid remodelling of the plasma membrane can be imaged with one of the sensitive Andor sCMOS cameras boasting from 2.0 to 4.2 megapixel resolution and up to 95% peak QE, perfectly suited to the low light conditions inherent to TIRF Microscopy.

細胞内移動

Without mechanisms to allow ongoing traffic of molecules, the cell’s finely tuned machinery would immediately grind to a halt. Therefore, fast and sensitive imaging is crucial for studies of endosome cycling, Golgi vesicles pathways, axonal transport, hormone release or synaptic vesicle pool replenishment.

Andor sCMOS cameras have for many years been the detector of choice for experiments involving imaging of cellular traffic. With their large FOV, resolution and speed, these cameras are ideal for tracking intricate events and dependencies occurring within the cell’s transport and communications networks.

オルガノイド

Three-dimensional (3D) organoids may be derived from live patient induced pluripotent stem cells to create a model system that can be used to test multiple hypotheses in a much simpler environment than a natural organ. 

For example, certain critical mutations known to initiate cancer development can be introduced by gene editing and trialled with regard to their overall impact in the carcinogenic pathway. Imaging of such gene edits within organoids can provide insight into the number of genetic mutations required for cancer development.

Using Andor sCMOS cameras, ideally complimented by the spinning disk confocal technique, you can achieve superb image quality of your organoid samples across 3D + time dimensions.

遺伝子編集

Recent years have seen a gradual increase in the number of studies related to Crispr-CAS9 system where this novel and versatile tool has been used with great precision for DNA editing and a multitude of applications that can benefit from this. Depending on the type of sample and labels used, this type of imaging may require iXon EMCCD cameras with their unrivalled sensitivity for extremely low-light signals. 

However, for more brightly labelled Crispr-Cas9 constructs, the arrival of low noise, high QE Andor sCMOS cameras makes them ideal tools for fast and sensitive detection of light emitted by labelled DNA/RNA or related proteins involved in strand cleavage and modification of the existing genetic code.

神経生理学

Imaging of neural correlations has been well established from studies done in model organisms including C. elegans and Drosophila. Experiments performed in these animals and the combination of whole cell labelling and whole organism imaging yielded valuable insights linking certain molecular circuits to stereotypical behaviours of the whole animal.

By combining techniques of optogenetics, photo-stimulation and classical fluorescent labelling we have now gained access to cells and tissues previously rendered invisible. Fast and sensitive sCMOS cameras provide images of large groups of firing of neurons in rapidly moving animals, helping you decode the circuitry behind behaviours.

物理科学用途のsCMOS

NEOと宇宙ごみ

地球接近天体(NEO)はその軌道が地球の軌道に近接する太陽系小型天体です。2018年の5月時点で、約18,000個の地球接近小惑星が発見され、そのうち887個が1 kmを超える大きさとされています。より小型の小惑星については調査が不十分ですが、大きな損害を与える可能性を秘めているものも存在します。小惑星は太陽系から定常的に排除される一方で、不幸なことに新規の参入も発見されています。そのため天文学における継続的な課題の一つにNEO観測が挙げられます。

宇宙ごみとは、地球の軌道中の使用されていない人工物体の総称です。軌道中には、約0.5インチ(1.27 cm)の大きさまで含めれば約50万個の宇宙ごみが存在し、そのうち2万1千個が直径4インチ(10.1 cm)を超える大きさと言われています。

AndorのsCMOSカメラ製品群は、NEOおよび宇宙ごみ追跡用カメラとして機能するオプションパッケージを提供します。広視野、高解像度、低ノイズ、高QEなどの優れた性能を備え、比較的小型の(そして低輝度の)物体に対しても高品質なデータ取得が可能です。

補償光学 in Astronomy (Wavefront Sensing)

Adaptive Optics is an established technique that uses deformable mirrors to provide real time compensation of wavefronts that are distorted by turbulence in the upper atmosphere, thus affording considerable resolution enhancement from ground based telescopes.

Andor sCMOS can be used to address the high speed demands required of wavefront sensing, providing closed loop feedback at several hundred frames per second. Furthermore, Andor’s latest generation sCMOS physical science platform, Marana, is architected to minimize latency in AO set-ups, through transmitting pixel row data for real time analysis as soon as the information is available, thus avoiding the need to first assemble an entire image before it leaves the camera.

流体力学 using Particle Imaging Velocimetry (PIV)

Particle Imaging Velocimetry (PIV) is an optical method of flow visualization used in research and industry to obtain velocity measurements and related properties in fluids. By taking two closely spaced images or ‘snapshots’ of the species, and using correlation algorithms, it is possible to build up 2D and 3D dynamic flow maps. The key to successful measurements is capturing short pulses of scattered light from the species (or tracers added to it) within a well-controlled timescale on the order of a few 100’s of nanoseconds to a few microseconds typically. 

Generally PIV requires a high sensitivity detector that offers accurate timing schemes in terms of triggering capability.

Andor offers sCMOS solutions for PIV both in our Zyla 5.5 and Neo 5.5 cameras, which offer global shutter snapshot exposure capability. Alternatively, the iStar sCMOS intensified sCMOS camera can be used for PIV, offering enhanced rejection of background photons through use of nanosecond exposure gating, synchronised to the laser pulses.

ダイナミックX線イメージング using Zyla HF

The need to acquire multiple images per second is becoming increasingly relevant in the field of X-ray imaging, for example, facilitating faster generation of high resolution 3D reconstructions in X-Ray Tomography or enabling real time imaging of fast processes in Engineered Materials Studies.

Andor offers a solution for fast X-ray imaging in our Zyla-HF [Link to Zyla-HF page] indirect detection camera, facilitating up to 100 fps at 5.5 Megapixel resolution. The outstanding design of Zyla-HF delivers the highest transmission and spatial resolution performance associated with state-of-the-art single fibre optic plate bonding, while also taking advantage of the very fast frame rate, ultra-low noise performance and exceptional field of view of sCMOS technology.

Its compact format, multiple mounting points and modular input configuration for scintillators or Beryllium filter integration allow ease of integration into laboratory setup or integrator (OEM) systems.</p.

中性子ラジオグラフィ&トモグラフィ

Neutron imaging has wide industrial and scientific significance and can provide detailed information concerning the inner structure and composition of objects. The principle of neutron imaging is based on the attenuation, through both scattering and absorption, of a directional neutron beam by the matter through which it passes. Since different materials vary in their ability to attenuate neutrons, then both composition and structure can be probed. The technique is also non-destructive in nature, and has been effectively applied to artefacts of archaeological significance.

Traditionally CCD’s have been used as imaging cameras for neutron tomography, however, this presents a limitation for measuring dynamic processes in real time. For the faster framing requirements, or to perform faster 3D tomography (or even 4D: 3D + time), then Andor’s sCMOS portfolio provide wonderful options. The Marana 4.2B-11 back-illuminated sCMOS, with large field of view 32 mm sensor, 95% QE and frame rates up to 48 fps presents an ideal solution.

冷却原子およびボースアインシュタイン凝縮

In the past few decades, ultra-cold matter has become a highly dynamic and fascinating field of study. Research around the world is establishing a high level of understanding of the underlying physics for applications, such as inertial guidance systems, atomic clocks, quantum computing and cryptography.

The high and broad QE profile of Andor sCMOS cameras provides excellent coverage of the visible / NIR wavelength range, often needed to image ultracold fermions at wavelengths of 670 nm and above, in both fluorescence and absorption type set-ups. The Marana 4.2B-11 with UV optimization also provides enhanced sensitivity for cold ion studies of magnesium (280 nm) and calcium (397 nm).

量子光学

Quantum entanglement occurs when two particles remain connected, even over large distances, so that actions performed on one particle have an effect on the other. Understanding of quantum entanglement forms the basis of the growing fields of quantum computing and quantum cryptography.

Thanks to their single-photon sensitivity, EMCCDs have been the detectors of choice for many years in experiments involving quantum optics, but sensitive sCMOS cameras have also been successfully used in quantum optics experiments. Indeed, they are expected to become increasingly popular for imaging of qubit states and general validation of basic concepts.

Andor sCMOS cameras can combine large field of view, high speed and high resolution with an image intensifier option, to provide an adaptable solution for experiments involving single entangled photons, atoms or polaritons.

お客様のニーズにすべてお応えするソリューション

Andorは、優れた性能特性を有するsCMOSカメラを幅広く提供します。生命科学または物理科学での用途が、広視野、究極的な高感度、高速性、高解像度または軽量小型なOEM設計など数多くの要件を抱えている場合でも、必ずや最適なソリューションを提供します。

Sona - Back-Illuminated sCMOS

Sona sCMOS

  • 顕微鏡検査用に究極化された感度: QE 95% および冷却温度 -45 °C
  • 細胞を広視野で捕捉
  • 顕微鏡の多様な対物倍率およびポートに対応
Specifications 価格を問い合わせる
Marana sCMOS

Marana sCMOS

  • 物理科学用途に最適化された感度: QE 95%および冷却温度 -45 °C
  • 天文学用途の広視野
  • UV感度の最適化を追加: 266 nmおよび335 nm
Specifications 価格を問い合わせる
Zyla 4.2 PLUS sCMOS

Zyla 4.2 PLUS

  • 感度と速度の程よいバランス: QE 82%で100 fps
  • 60xおよび40x対物レンズ倍率に最適
  • 生命科学および物理科学アプリケーションに適する
Request Pricing
Zyla 5.5 sCMOS

Zyla 5.5 sCMOS

  • コストパフォーマンスを重視: QE 60%で100 fps
  • 5.5 MP: 22 mm Cマウントポートに最適
  • 生命科学および物理科学アプリケーションに適する
Request Pricing
Neo 5.5 sCMOS

Neo 5.5 sCMOS

  • ディープ冷却、5.5メガピクセルソリューション: QE 60%で冷却温度 -40°C
  • グローバルシャッタモードとローリングシャッタモード
  • 生命科学、物理科学用途に利用可能
仕様書を見る 価格を問い合わせる

sCMOS感度の究極化

新発売されたSonaおよびMaranaカメラは、ピクセルサイズが11µmの背面照射sCMOSセンサを搭載し、QEを95%まで向上させました。すなわち光子捕捉の最大化のために最適化されたものであり、微弱光アプリケーションに適しています。

Signal to Noise

微弱光条件(センサ面積100 µm2当たり10入射光子) の下でのS/Nの比較:  - 同一の微弱光条件において、背面照射型でピクセルサイズを大型化したSona 4.2Bにおいて、光子捕捉感度とS/Nの最大化が達成されたことが分かります。

sCMOS視野の究極化

フラッグシップモデルであるSona 4.2BとMarana 4.2背面照射カメラは、2048 × 2048ピクセル全域に有効にアクセス可能といった独自技術を活用し、画期的な32 mm対角センサを導入しました。

Sona sCMOS with 2048 x 2048 full array
Competitor back-illuminated sCMOS with restricted 1608 x 1608 array

顕微鏡検査視野における優位性: 2048×2048ピクセルSona 4.2B-11は、競合機の1608×1608ピクセル背面照射sCMOSカメラよりも62%広い視野を持ちます。60x対物レンズと別売りのマグニファイングカプラーユニット*を使用することにより、Nyquist解像鮮明度を維持しながら2048×2048ピクセル全域へのアクセスが可能となります

*マグニファイングカプラーユニット(MCU)はAndorから購入可能です。

sCMOSの高速イメージングソリューション

sCMOSテクノロジーは、高度に同時化されたピクセル読出しが基盤技術となりますが、そこではノイズを極めて低いレベルに抑えながら、フレームレートと解像度のバランスが調整されます。

SonaおよびMarana背面照射カメラはともに12-bitの増速モードを有します。一方Zylaモデルでは、ノイズを極力低いレベルに抑えながらダイナミックレンジの最大化を図り、高速プロセスに追随する最適ソリューションが追求されます。

sCMOSのダイナミックレンジ拡大ソリューション

AndorのsCMOSカメラはそれぞれが、16-bitデータレンジでサポートされたダイナミックレンジ拡張機能を備えています。革新的な「デュアルオペレーションアンプリファイア」センシング技術を活用して、ピクセルウェル容量の最大化とノイズ低減の両立を図り、極端に弱い信号領域と相対的に強い信号領域を一枚の画像から定量化できるようになりました。

All Andor sCMOS cameras offer a 16-bit Extended Dynamic range capability, therefore can capture both low and high signal detail with a single capture.
モデル ピクセルウェル容量 (e-) ダイナミックレンジ
Sona 4.2B and 2.0B 85,000 53,000:1
Marana 4.2B 85,000 53,000:1
Zyla 4.2 PLUS 30,000 33,000:1
Zyla 5.5 30,000 33,000:1
Neo 5.5 30,000 33,000:1

以上に加えてこのクラス最高の定量精度を達成するため、Andorは搭載ソフトウェアの強化にも取り組み、市場をリードする99.8%を超えるリニアリティを実現しました。

モデルオプション