オックスフォード・インストゥルメンツー事業部ページ
拡張

OptistatDN

液体窒素バス式光学測定用 77 K クライオスタット。
試料熱交換ガス雰囲気。

  • 温度範囲:77 K - 500 K

  • トップローディング方式のサンプルプローブにより、試料交換が短時間で可能

  • 長い寒剤保持時間


お問い合わせ

  • 温度範囲:77 K - 500 K
  • 約20分で77 K まで冷却
  • トップローディング方式のサンプルプローブにより、試料交換時間はわずか5分
  • 寒剤保持時間が15時間程度と長く、終日にわたる機器の運用が可能
  • 集光が必要な測定に対応した、優れた光学アクセス(f/1)
  • 反射および透過の光学測定に対応
  • 広い照射面積:直径 15mmの窓開口部
  • コンパクトサイズのため、市販の分光器への組み込みが容易
  • 試料への10-ピン電気配線により、電気測定が可能
  •  MercuryiTC 温度コントローラが付属
  • 1年間の標準保証

Low cryogen consumption: Brings significant benefits in terms of running cost

Quick experiments: A range of sample holders and probes, including liquid cuvettes sample holders and height adjust/rotate probes, are available

Simple: The experimental windows and sample holders can be easily changed

Versatile: A range of window materials are available. Please contact your local sales representative for more information

Software control: Oxford Instruments electronics products are controllable through the software using RS232, USB (serial emulation), TCP/IP or GPIB interfaces. LabVIEW function libraries and virtual instruments are provided for Oxford Instruments electronics products to allow PC-based control and monitoring. These can be integrated into a complete LabVIEW data acquisition system

Temperature range: 77.2 to 300 K, may be extended up to 500 K

Temperature stability: ± 0.1 K

Liquid nitrogen hold time: 15 hrs at 77 K (nominal)

Room temperature to base temperature: approx. 20 min

Sample change time: approx. 5 min (sample can be changed with the cryostat cold)

Weight: 5 kg

A typical system comprises of:

  • OptistatDN nitrogen cryostat
  • Sample holder and rod
  • Up to five sets of windows. (four radial; one axial). Each set includes two windows (radiation shield and outer case windows)
  • Mercury iTC temperature controller
  • High vacuum pumping system

UV / Visible spectroscopy: Experiments at low temperatures reveal the interaction between the electronic energy levels and vibrational modes in solids.

Infra-red spectroscopy: Low temperature IR spectroscopy is used to measure changes in interatomic vibrational modes as well as other phenomena such as the energy gap in a superconductor below its transition temperature.

Raman spectroscopy: Lower temperatures result in narrower lines associated with the observed Raman excitations.

Photoluminescence: At low temperatures, spectral features are sharper and more intense, thereby increasing the amount of information available.

関連情報

その他アプリケーション

ナノマテリアルの成長と特性評価低次元構造の物性評価モジュール式光学分光法